Solved

Use the Following Property of the Definite Integral to Estimate z/6π/46sinxdx\int _ { z / 6 } ^ { \pi / 4 } 6 \sin x d x

Question 156

Multiple Choice

Use the following property of the definite integral to estimate the definite integral z/6π/46sinxdx\int _ { z / 6 } ^ { \pi / 4 } 6 \sin x d x :
If mf(x) Mm \leq f ( x ) \leq M on [a,b][ a , b ] , then
m(ba) abf(x) dxM(ba) m ( b - a ) \leq \int _ { a } ^ { b } f ( x ) d x \leq M ( b - a )


A)
π2s/6x/46sinxdx2π2\frac { \pi } { 2 } \leq \int _ { s / 6 } ^ { x / 4 } 6 \sin x d x \leq \frac { \sqrt { 2 } \pi } { 2 }
B) 2π4z/6s/46sinxdxπ4\frac { \sqrt { 2 } \pi } { 4 } \leq \int _ { z / 6 } ^ { s / 4 } 6 \sin x d x \leq \frac { \pi } { 4 }
C)
π4s/6s/46sinxdx2π4\frac { \pi } { 4 } \leq \int _ { s / 6 } ^ { s / 4 } 6 \sin x d x \leq \frac { \sqrt { 2 } \pi } { 4 }
D) 2π2s/6π/46sinxdxπ2\frac { \sqrt { 2 } \pi } { 2 } \leq \int _ { s / 6 } ^ { \pi / 4 } 6 \sin x d x \leq \frac { \pi } { 2 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions