Solved

Find the Integral Using an Appropriate Trigonometric Substitution x3x2+36dx\int \frac { x ^ { 3 } } { \sqrt { x ^ { 2 } + 36 } } d x

Question 125

Multiple Choice

Find the integral using an appropriate trigonometric substitution.
x3x2+36dx\int \frac { x ^ { 3 } } { \sqrt { x ^ { 2 } + 36 } } d x


A) 13(x2+36) 3/2x2+36+C\frac { 1 } { 3 } \left( x ^ { 2 } + 36 \right) ^ { 3 / 2 } \sqrt { x ^ { 2 } + 36 } + C
B) 13(x2+72) x2+36+C\frac { 1 } { 3 } \left( x ^ { 2 } + 72 \right) \sqrt { x ^ { 2 } + 36 } + C
C) 13(x272) x2+36+C\frac { 1 } { 3 } \left( x ^ { 2 } - 72 \right) \sqrt { x ^ { 2 } + 36 } + C
D) 13(x236) 3/2x2+36+C\frac { 1 } { 3 } \left( x ^ { 2 } - 36 \right) ^ { 3 / 2 } \sqrt { x ^ { 2 } + 36 } + C

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions