menu-iconExamlexExamLexServices

Discover

Ask a Question
  1. All Topics
  2. Topic
    Mathematics
  3. Study Set
    Multivariable Calculus International
  4. Exam
    Exam 6: Applications of Integration
  5. Question
    Find the Absolute Minimum Value of the Function\[g ( x ) = \frac { e ^ { x } } { x ^ { 4 } } , x > 0\]
Solved

Find the Absolute Minimum Value of the Function g(x)=exx4,x>0g ( x ) = \frac { e ^ { x } } { x ^ { 4 } } , x > 0g(x)=x4ex​,x>0

Question 76

Question 76

Short Answer

Find the absolute minimum value of the function.
g(x)=exx4,x>0g ( x ) = \frac { e ^ { x } } { x ^ { 4 } } , x > 0g(x)=x4ex​,x>0

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Q71: Use Newton's method to find the

Q72: Find the limit.<br> <span class="ql-formula" data-value="\lim

Q73: Use the properties of logarithms to

Q74: <span class="ql-formula" data-value="\text { The graph of

Q75: Find <span class="ql-formula" data-value="f ^

Q77: Evaluate the expression.<br> <span class="ql-formula" data-value="\log

Q78: Find an equation of the tangent

Q79: Find the inverse of <span

Q80: Find the inverse of the function.<br>

Q81: Differentiate the function.<br> <span class="ql-formula" data-value="g

Examlex

ExamLex

About UsContact UsPerks CenterHomeschoolingTest Prep

Work With Us

Campus RepresentativeInfluencers

Links

FaqPricingChrome Extension

Download The App

Get App StoreGet Google Play

Policies

Privacy PolicyTerms of ServiceHonor CodeCommunity Guidelines

Scan To Download

qr-code

Copyright © (2025) ExamLex LLC.

Privacy PolicyTerms Of ServiceHonor CodeCommunity Guidelines