Solved

Evaluate the Integral Using the Indicated Trigonometric Substitution x3x2+25dx;x=5tanθ\int \frac { x ^ { 3 } } { \sqrt { x ^ { 2 } + 25 } } d x ; \quad x = 5 \tan \theta

Question 132

Multiple Choice

Evaluate the integral using the indicated trigonometric substitution.
x3x2+25dx;x=5tanθ\int \frac { x ^ { 3 } } { \sqrt { x ^ { 2 } + 25 } } d x ; \quad x = 5 \tan \theta


A) (x2+25) 3/25x2+25+C\left( x ^ { 2 } + 25 \right) ^ { 3 / 2 } - 5 \sqrt { x ^ { 2 } + 25 } + C
B) (x2+25) 3/2x2+25+C\left( x ^ { 2 } + 25 \right) ^ { 3 / 2 } - \sqrt { x ^ { 2 } + 25 } + C
C) 13(x2+25) 3/2x2+25+C\frac { 1 } { 3 } \left( x ^ { 2 } + 25 \right) ^ { 3 / 2 } - \sqrt { x ^ { 2 } + 25 } + C
D) 13(x2+25) 3/225x2+25+C\frac { 1 } { 3 } \left( x ^ { 2 } + 25 \right) ^ { 3 / 2 } - 25 \sqrt { x ^ { 2 } + 25 } + C
E) 32(x+25) 3/225x+25+C\frac { 3 } { 2 } ( x + 25 ) ^ { 3 / 2 } - 25 \sqrt { x + 25 } + C

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions