Solved

Write an Integral Giving the Area of the Surface Obtained xx

Question 146

Multiple Choice

Write an integral giving the area of the surface obtained by revolving the curve about the xx -axis. (Do not evaluate the integral.)
y=2x on [1,5]y = \frac { 2 } { x } \text { on } [ 1,5 ]


A)
2π15x44x3dx2 \pi \int _ { 1 } ^ { 5 } \frac { \sqrt { x ^ { 4 } - 4 } } { x ^ { 3 } } d x
B)
4π15x3x4+4dx4 \pi \int _ { 1 } ^ { 5 } x ^ { 3 } \sqrt { x ^ { 4 } + 4 } d x
C)
4π15x4+4x3dx4 \pi \int _ { 1 } ^ { 5 } \frac { \sqrt { x ^ { 4 } + 4 } } { x ^ { 3 } } d x
D)
2π152x(1+(2x2) 2dx2 \pi \int _ { 1 } ^ { 5 } \frac { 2 } { x } \left( 1 + \left( - \frac { 2 } { x ^ { 2 } } \right) ^ { 2 } d x \right.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions