Solved

Solve the Differential Equation yt=x2esinxycosxy ^ { t } = x ^ { 2 } e ^ { - \sin x } - y \cos x

Question 17

Multiple Choice

Solve the differential equation. Select the correct answer.
yt=x2esinxycosxy ^ { t } = x ^ { 2 } e ^ { - \sin x } - y \cos x


A) y=2Ceesinxy = 2 \mathrm { Ce } e ^ { - \sin x }
B) y=esinx+2Cx2y = e ^ { - \sin x } + 2 C x ^ { 2 }
C)
y=13x+Cecosxy = \frac { 1 } { 3 } x + C e ^ { - \cos x }
D) y=(3x3+C) exsinxy = \left( 3 x ^ { 3 } + C \right) e ^ { - x } \sin x
E)
y=(13x3+C) esinxy = \left( \frac { 1 } { 3 } x ^ { 3 } + C \right) e ^ { - \sin x }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions