Solved

Find the Point(s) of Intersection of the Curves r=2r = 2

Question 4

Multiple Choice

Find the point(s) of intersection of the curves r=2r = 2 and r=4cosθr = 4 \cos \theta .


A) (2,π6) ,(2,π6) \left( 2 , \frac { \pi } { 6 } \right) , \left( 2 , - \frac { \pi } { 6 } \right)
B) (2,π4) ,(2,π4) \left( 2 , \frac { \pi } { 4 } \right) , \left( 2 , - \frac { \pi } { 4 } \right)
C) (2,π3) ,(2,π3) \left( 2 , \frac { \pi } { 3 } \right) , \left( 2 , - \frac { \pi } { 3 } \right)
D) (2,π6) \left( 2 , \frac { \pi } { 6 } \right)
E) (2,π3) \left( 2 , \frac { \pi } { 3 } \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions