Solved

Let ak=f(k)a _ { k } = f ( k )

Question 5

Short Answer

Let ak=f(k)a _ { k } = f ( k ) , where ff is a continuous, positive, and decreasing function on [n,)[ n , \infty ) , and suppose that k=1ak\sum _ { k = 1 } ^ { \infty } a _ { k } is convergent. Defining Rn=SSnR _ { n } = S - S _ { n } , where S=n=1anS = \sum _ { n = 1 } ^ { \infty } a _ { n } and Sn=k=1nakS _ { n } = \sum _ { k = 1 } ^ { n } a _ { k } , we have that n+1f(x)dxRnnf(x)dx\int _ { n + 1 } ^ { \infty } f ( x ) d x \leq R _ { n } \leq \int _ { n } ^ { \infty } f ( x ) d x . Find the maximum error if the sum of the series n=13n2\sum _ { n = 1 } ^ { \infty } \frac { 3 } { n ^ { 2 } } is approximated by S40S _ { 40 } .

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions