Solved

The Helix r1(t)=4costi+sintj+tk\mathbf { r } _ { 1 } ( t ) = 4 \cos t \mathbf { i } + \sin t \mathbf { j } + t \mathbf { k }

Question 50

Multiple Choice

The helix r1(t) =4costi+sintj+tk\mathbf { r } _ { 1 } ( t ) = 4 \cos t \mathbf { i } + \sin t \mathbf { j } + t \mathbf { k } intersects the curve r2(t) =(4+t) i+6t2j+5t3k\mathbf { r } _ { 2 } ( t ) = ( 4 + t ) \mathbf { i } + 6 t ^ { 2 } \mathbf { j } + 5 t ^ { 3 } \mathbf { k } at the point (4,0,0) ( 4,0,0 ) . Find the angle of intersection.


A) 0
B) π4\frac { \pi } { 4 }
C) π2\frac { \pi } { 2 }
D) π3\frac { \pi } { 3 }
E) None of these

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions