Solved

Find a Vector Function That Represents the Curve of Intersection x2+5y2+5z2=25x ^ { 2 } + 5 y ^ { 2 } + 5 z ^ { 2 } = 25

Question 136

Multiple Choice

Find a vector function that represents the curve of intersection of the two surfaces:
the top half of the ellipsoid x2+5y2+5z2=25x ^ { 2 } + 5 y ^ { 2 } + 5 z ^ { 2 } = 25 and the parabolic cylinder y=x2y = x ^ { 2 } .


A)
r(t) =ti+t2j+25t25t5k\mathrm { r } ( t ) = t \mathbf { i } + t ^ { 2 } \mathbf { j } + \sqrt { \frac { 25 - t ^ { 2 } - 5 t } { 5 } } \mathbf { k }
B) r(t) =tit2j25t25t5k\mathbf { r } ( t ) = t \mathbf { i } - t ^ { 2 } \mathbf { j } - \sqrt { \frac { 25 - t ^ { 2 } - 5 t } { 5 } } \mathbf { k }
C)
r(t) =ti+t2j+5t25t45k\mathbf { r } ( t ) = t \mathbf { i } + t ^ { 2 } \mathbf { j } + \sqrt { \frac { 5 - t ^ { 2 } - 5 t ^ { 4 } } { 5 } } \mathbf { k }
D)
r(t) =ti+t4j+25t2+5t5k\mathbf { r } ( t ) = t \mathbf { i } + t ^ { 4 } \mathbf { j } + \sqrt { \frac { 25 - t ^ { 2 } + 5 t } { 5 } } \mathbf { k }
E)
r(t) =ti+t2j+25+t25t45k\mathbf { r } ( t ) = t \mathbf { i } + t ^ { 2 } \mathbf { j } + \sqrt { \frac { 25 + t ^ { 2 } - 5 t ^ { 4 } } { 5 } } \mathbf { k }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions