Solved

The Torsion of a Curve Defined By r(t)\mathbf { r } ( t )

Question 60

Short Answer

The torsion of a curve defined by r(t)\mathbf { r } ( t ) is given by
τ=(rt×rtt)rtttrt×rtt2\tau = \frac { \left( \mathbf { r } ^ { t } \times \mathbf { r } ^ { tt } \right) \cdot \mathbf { r } ^ { ttt } } { \left| \mathbf { r } ^ { t } \times \mathbf { r } ^ { t t } \right| ^ { 2 } }
Find the torsion of the curve defined by r(t)=cos2ti+sin2tj+5tk\mathbf { r } ( t ) = \cos 2 t \mathbf { i } + \sin 2 t \mathbf { j } + 5 t \mathbf { k } .

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions