Solved

The Curvature of the Curve Given by the Vector Function rr

Question 36

Multiple Choice

The curvature of the curve given by the vector function rr is
k(t) =rt(t) ×rtt(t) rt(t) 3\mathrm { k } ( t ) = \frac { \left| \mathbf { r } ^ { t } ( t ) \times \mathbf { r } ^ { tt } ( t ) \right| } { \left| \mathbf { r } ^ { t } ( t ) \right| ^ { 3 } }
Use the formula to find the curvature of r(t) =13t,et,et) \mathbf { r } ( t ) = \left\langle \sqrt { 13 } t , e ^ { t } , e ^ { - t } \right) at the point (0,1,1) ( 0,1,1 ) .
Select the correct answer.


A) 15\sqrt { 15 }
B) 215\frac { \sqrt { 2 } } { 15 }
C) 15215 \sqrt { 2 }
D) 152\frac { 15 } { \sqrt { 2 } }
E) 1515\frac { \sqrt { 15 } } { 15 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions