Solved

Find the Indicated Partial Derivative u=xaybzc;6uxy2z3,a>1,b>2,c>3u = x ^ { a } y ^ { b } z ^ { c } ; \frac { \partial ^ { 6 } u } { \partial x \partial y ^ { 2 } \partial z ^ { 3 } } , a > 1 , b > 2 , c > 3

Question 38

Multiple Choice

Find the indicated partial derivative.
u=xaybzc;6uxy2z3,a>1,b>2,c>3u = x ^ { a } y ^ { b } z ^ { c } ; \frac { \partial ^ { 6 } u } { \partial x \partial y ^ { 2 } \partial z ^ { 3 } } , a > 1 , b > 2 , c > 3


A)
6uxy2z3=cb(b1) c(a1) (a2) xc1yb2za3\frac { \partial ^ { 6 } u } { \partial x \partial y ^ { 2 } \partial z ^ { 3 } } = c b ( b - 1 ) c ( a - 1 ) ( a - 2 ) x ^ { c - 1 } y ^ { b - 2 } z ^ { a - 3 }
B) 6uxy2z3=xa1y32zc3\frac { \partial ^ { 6 } u } { \partial x \partial y ^ { 2 } \partial z ^ { 3 } } = x ^ { a - 1 } y ^ { 3 - 2 } z ^ { c - 3 }
C)
6uxy2z3=ab(b1) c(c1) (c2) xa1yb2zc3\frac { \partial ^ { 6 } u } { \partial x \partial y ^ { 2 } \partial z ^ { 3 } } = a b ( b - 1 ) c ( c - 1 ) ( c - 2 ) x ^ { a - 1 } y ^ { b - 2 } z ^ { c - 3 }
D)
6uxy2z3=acb(a1) (a2) xa1yb2zc3\frac { \partial ^ { 6 } u } { \partial x \partial y ^ { 2 } \partial z ^ { 3 } } = a c b ( a - 1 ) ( a - 2 ) x ^ { a - 1 } y ^ { b - 2 } z ^ { c - 3 }
E)
6uxy2z3=xb1yc2za3\frac { \partial ^ { 6 } u } { \partial x \partial y ^ { 2 } \partial z ^ { 3 } } = x ^ { b - 1 } y ^ { c - 2 } z ^ { a - 3 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions