Solved

Find the Area of the Part of Hyperbolic Paraboloid z=y2x2z = y ^ { 2 } - x ^ { 2 }

Question 60

Multiple Choice

Find the area of the part of hyperbolic paraboloid z=y2x2z = y ^ { 2 } - x ^ { 2 } that lies between the cylinders x2+y2=1x ^ { 2 } + y ^ { 2 } = 1 and x2+y2=36x ^ { 2 } + y ^ { 2 } = 36 .


A) (12971297+55) π( 1297 \sqrt { 1297 } + 5 \sqrt { 5 } ) \pi
B) (1297129765) π( 1297 \sqrt { 1297 } - 6 \sqrt { 5 } ) \pi
C) 19(1297129765) π\frac { 1 } { 9 } ( 1297 \sqrt { 1297 } - 6 \sqrt { 5 } ) \pi
D) 19(1297129755) \frac { 1 } { 9 } ( 1297 \sqrt { 1297 } - 5 \sqrt { 5 } )
E) 19(1297129755) π\frac { 1 } { 9 } ( 1297 \sqrt { 1297 } - 5 \sqrt { 5 } ) \pi

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions