Solved

Show That F\mathbf { F } Is Conservative and Find a Function

Question 118

Multiple Choice

Show that F\mathbf { F } is conservative and find a function ff such that F=f\mathbf { F } = \nabla f , and use this result to evaluate CFdr\int _ { C } \mathbf { F } \cdot d \mathbf { r } , where CC is any path from A(x0,y0) A \left( x _ { 0 } , y _ { 0 } \right) to B(x1,y1) B \left( x _ { 1 } , y _ { 1 } \right) .
F(x,y) =(15x2y214xy4) i+(10x3y28x2y3) j;A(1,2) \mathbf { F } ( x , y ) = \left( 15 x ^ { 2 } y ^ { 2 } - 14 x y ^ { 4 } \right) \mathbf { i } + \left( 10 x ^ { 3 } y - 28 x ^ { 2 } y ^ { 3 } \right) \mathbf { j } ; A ( 1 , - 2 ) and B(1,1) B ( 1 , - 1 )


A) CFdr=34\int _ { C } \mathbf { F } \cdot d \mathbf { r } = 34
B) CFdr=90\int _ { C } \mathbf { F } \cdot d \mathbf { r } = 90
C) CFdr=144\int _ { C } \mathbf { F } \cdot d \mathbf { r } = - 144
D) CFdr=118\int _ { C } \mathbf { F } \cdot d \mathbf { r } = 118

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions