Solved

Solve the Differential Equation Using the Method of Variation of Parameters

Question 134

Multiple Choice

Solve the differential equation using the method of variation of parameters.
ytt4yt+3y=2sinxy ^ { tt } - 4 y ^ { t } + 3 y = 2 \sin x


A)
y(x) =c1e3x+c2ex+15sinxy ( x ) = c _ { 1 } e ^ { 3 x } + c _ { 2 } e ^ { x } + \frac { 1 } { 5 } \sin x
B)
y(x) =c1e3x+c2ex+25cosx+15sinxy ( x ) = c _ { 1 } e ^ { 3 x } + c _ { 2 } e ^ { x } + \frac { 2 } { 5 } \cos x + \frac { 1 } { 5 } \sin x
C)
y(x) =c1sinx+c25x+15sinxy ( x ) = c _ { 1 } \sin x + \frac { c _ { 2 } } { 5 } x + \frac { 1 } { 5 } \sin x
D)
y(x) =c1sin3x+c24x+cos3xy ( x ) = c _ { 1 } \sin 3 x + \frac { c _ { 2 } } { 4 } x + \cos 3 x
E)
y(x) =c1e3x+c2ex+25sinxy ( x ) = c _ { 1 } e ^ { 3 x } + c _ { 2 } e ^ { x } + \frac { 2 } { 5 } \sin x

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions