Solved

Use Power Series to Solve the Differential Equation (x2+1)ytt+xyty=0\left( x ^ { 2 } + 1 \right) y ^ { tt } + x y ^ { t } - y = 0

Question 81

Multiple Choice

Use power series to solve the differential equation. Select the correct answer.
(x2+1) ytt+xyty=0\left( x ^ { 2 } + 1 \right) y ^ { tt } + x y ^ { t } - y = 0


A)
y(x) =c0n=2(1) n1(2n3) !22n2n!(n2) !x2ny ( x ) = c _ { 0 } \sum _ { n = 2 } ^ { \infty } \frac { ( - 1 ) ^ { n - 1 } ( 2 n - 3 ) ! } { 2 ^ { 2 n - 2 } n ! ( n - 2 ) ! } x ^ { 2 n }
B)
y(x) =c0+c1x+c0x22+c0n=2(1) n1(2n3) !22n2n!(n2) !x2n+1y ( x ) = c _ { 0 + } c _ { 1 } x + c _ { 0 } \frac { x ^ { 2 } } { 2 } + c _ { 0 } \sum _ { n = 2 } ^ { \infty } \frac { ( - 1 ) ^ { n - 1 } ( 2 n - 3 ) ! } { 2 ^ { 2 n - 2 } n ! ( n - 2 ) ! } x ^ { 2 n + 1 }
C)
y(x) =c0+c1x+c0x22+c0n=2(1) n1(2n3) !22n2(n2) !x2ny ( x ) = c _ { 0 + } c _ { 1 } x + c _ { 0 } \frac { x ^ { 2 } } { 2 } + c _ { 0 } \sum _ { n = 2 } ^ { \infty } \frac { ( - 1 ) ^ { n - 1 } ( 2 n - 3 ) ! } { 2 ^ { 2 n - 2 } ( n - 2 ) ! } x ^ { 2 n }
D)
y(x) =c0+c1x+c0x22+c0n=2(1) n1(2n3) !22n2n!(n2) !x2ny ( x ) = c _ { 0 + } c _ { 1 } x + c _ { 0 } \frac { x ^ { 2 } } { 2 } + c _ { 0 } \sum _ { n = 2 } ^ { \infty } \frac { ( - 1 ) ^ { n - 1 } ( 2 n - 3 ) ! } { 2 ^ { 2 n - 2 } n ! ( n - 2 ) ! } x ^ { 2 n }
E)
y(x) =c0+c1x+c0x22+c0n2(1) n+1(2n) !22n+2n!(n2) !x2n+1y ( x ) = c _ { 0 + } c _ { 1 } x + c _ { 0 } \frac { x ^ { 2 } } { 2 } + c _ { 0 } \sum _ { n - 2 } ^ { \infty } \frac { ( - 1 ) ^ { n + 1 } ( 2 n ) ! } { 2 ^ { 2 n + 2 } n ! ( n - 2 ) ! } x ^ { 2 n + 1 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions