Solved

In a Study of Captive Nectar-Feeding Bats (Leptonycteris Sanborni), Data RWG= PostFeeding - Original  Original R W G=\frac{\text { PostFeeding - Original }}{\text { Original }}

Question 6

Essay

In a study of captive nectar-feeding bats (Leptonycteris sanborni), data were gathered on nectar intake over a five-minute flight period. The bats were randomly selected for the study. Investigators are interested in the differences in weight gain for males and females. The bats were weighed before and after feeding, and the relative weight gain was calculated for each animal using the formula:

RWG= PostFeeding - Original  Original R W G=\frac{\text { PostFeeding - Original }}{\text { Original }}

 Bat #  Sex  Original  Weight  Post-feeding  Weight  Relative  Weight gain 1F18.619.80.0652F18.520.80.1243F18.620.00.0754F20.421.90.0745F21.523.00.0706F20.322.00.0847 F 17.018.50.0888F17.019.00.1189F17.519.20.09710F19.721.00.06611M18.220.20.11012M20.222.30.10413M19.020.50.07914M17.318.50.06915M17.819.00.06716M19.521.60.10817M21.022.80.08618M17.018.40.08219M18.319.30.055\begin{array}{|c|c|c|c|c|}\hline \text { Bat \# } & \text { Sex } & \begin{array}{c}\text { Original } \\\text { Weight }\end{array} & \begin{array}{c}\text { Post-feeding } \\\text { Weight }\end{array} & \begin{array}{c}\text { Relative } \\\text { Weight gain }\end{array} \\\hline\mathbf{1} & \mathrm{F} & 18.6 & 19.8 & 0.065 \\\mathbf{2} & \mathrm{F} & 18.5 & 20.8 & 0.124 \\\mathbf{3} & \mathrm{F} & 18.6 & 20.0 & 0.075 \\\mathbf{4} & \mathrm{F} & 20.4 & 21.9 & 0.074 \\\mathbf{5} & \mathrm{F} & 21.5 & 23.0 & 0.070 \\\mathbf{6} & \mathrm{F} & 20.3 & 22.0 & 0.084\\\mathbf{7} & \text { F } & 17.0 & 18.5 & 0.088 \\\mathbf{8} & \mathrm{F} & 17.0 & 19.0 & 0.118 \\\mathbf{9} & \mathrm{F} & 17.5 & 19.2 & 0.097 \\\mathbf{1 0} & \mathrm{F} & 19.7 & 21.0 & 0.066 \\\mathbf{1 1} & \mathrm{M} & 18.2 & 20.2 & 0.110 \\\mathbf{1 2} & \mathrm{M} & 20.2 & 22.3 & 0.104 \\\mathbf{1 3} & \mathrm{M} & 19.0 & 20.5 & 0.079\\\mathbf{1 4} & \mathrm{M} & 17.3 & 18.5 & 0.069 \\\mathbf{1 5} & \mathrm{M} & 17.8 & 19.0 & 0.067 \\\mathbf{1 6} & \mathrm{M} & 19.5 & 21.6 & 0.108 \\\mathbf{1 7} & \mathrm{M} & 21.0 & 22.8 & 0.086 \\\mathbf{1 8} & \mathrm{M} & 17.0 & 18.4 & 0.082 \\\mathbf{1 9} & \mathrm{M} & 18.3 & 19.3 & 0.055\\\hline\end{array}



Consider constructing a 95%95 \% confidence interval for the population difference in mean weight gains for male and female bats.
a) Using a graphic display of your choice, show that it is appropriate to use the tt procedure to construct a confidence interval.




b) Calculate and interpret the 95%95 \% confidence interval in the context of the problem.





c) Do you feel these results can be generalized to non-captive bats? Why or why not?

Correct Answer:

verifed

Verified

a)
blured image

b)
Let blured image represent the population me...

View Answer

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions