Solved

The Position of an Object Subjected to Constant Acceleration Can

Question 11

Multiple Choice

The position of an object subjected to constant acceleration can be described by the following  function: x(t) =x0+v0t+12at2 where x= position (m) x0= initial position (m) v0= initial velocity (m/s) a= acceleration (m/s2) t= time (sec) \begin{array} { l } \text { function: } \quad x ( t ) = x _ { 0 } + v _ { 0 } t + \frac { 1 } { 2 } a t ^ { 2 } \\\text { where } x = \text { position } ( \mathrm { m } ) \\x _ { 0 } = \text { initial position } ( \mathrm { m } ) \\v _ { 0 } = \text { initial velocity } ( \mathrm { m } / \mathrm { s } ) \\a = \text { acceleration } \left( \mathrm { m } / \mathrm { s } ^ { \wedge } 2 \right) \\t = \text { time } ( \mathrm { sec } ) \end{array} Which type of mathematical model is used here to describe the object's position?


A) Linear model
B) Nonlinear model
C) Exponential model
D) Trigonometric model

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions