Solved

Write the System of Equations in Matrix Form {ab+c=84ab+c=0a+b+2c=7a+c+d=0\left\{ \begin{array} { l } a - b + c = 8 \\4 a - b + c = 0 \\a + b + 2 c = 7 \\a + c + d = 0\end{array} \right.

Question 9

Multiple Choice

Write the system of equations in matrix form. {ab+c=84ab+c=0a+b+2c=7a+c+d=0\left\{ \begin{array} { l } a - b + c = 8 \\4 a - b + c = 0 \\a + b + 2 c = 7 \\a + c + d = 0\end{array} \right.


A) [1110411011201011][abca]=[8070]\left[ \begin{array} { c c c c } 1 & - 1 & 1 & 0 \\4 & - 1 & 1 & 0 \\1 & 1 & 2 & 0 \\1 & 0 & 1 & 1\end{array} \right] \left[ \begin{array} { l } a \\b \\c \\a\end{array} \right] = \left[ \begin{array} { l } 8 \\0 \\7 \\0\end{array} \right]

B) [8110011071200011][abca]=[1411]\left[ \begin{array} { c c c c } 8 & - 1 & 1 & 0 \\0 & - 1 & 1 & 0 \\7 & 1 & 2 & 0 \\0 & 0 & 1 & 1\end{array} \right] \left[ \begin{array} { l } a \\b \\c \\a\end{array} \right] = \left[ \begin{array} { l } 1 \\4 \\1 \\1\end{array} \right]

C) [8110041071200111][abca]=[0001]\left[ \begin{array} { l l l l } 8 & 1 & 1 & 0 \\0 & 4 & 1 & 0 \\7 & 1 & 2 & 0 \\0 & 1 & 1 & 1\end{array} \right] \left[ \begin{array} { l } a \\b \\c \\a\end{array} \right] = \left[ \begin{array} { l } 0 \\0 \\0 \\1\end{array} \right]

D) [111411112][abc]=[807]\left[ \begin{array} { c c c } 1 & - 1 & 1 \\4 & - 1 & 1 \\1 & 1 & 2\end{array} \right] \left[ \begin{array} { l } a \\b \\c\end{array} \right] = \left[ \begin{array} { l } 8 \\0 \\7\end{array} \right]

E) none

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions