Solved

Write the System of Equations in Matrix Form {ab+c=84ab+c=0a+b+2c=7a+c+d=0\left\{ \begin{array} { l } a - b + c = 8 \\4 a - b + c = 0 \\a + b + 2 c = 7 \\a + c + d = 0\end{array} \right.

Question 91

Multiple Choice

Write the system of equations in matrix form. {ab+c=84ab+c=0a+b+2c=7a+c+d=0\left\{ \begin{array} { l } a - b + c = 8 \\4 a - b + c = 0 \\a + b + 2 c = 7 \\a + c + d = 0\end{array} \right.


A) [1110411011201011][abca]=[8070]\left[ \begin{array} { c c c c } 1 & - 1 & 1 & 0 \\ 4 & - 1 & 1 & 0 \\ 1 & 1 & 2 & 0 \\ 1 & 0 & 1 & 1 \end{array} \right] \left[ \begin{array} { l } a \\ b \\ c \\ a \end{array} \right] = \left[ \begin{array} { l } 8 \\ 0 \\ 7 \\ 0 \end{array} \right] \quad
B) [8110011071200011][abca]=[1411]\left[ \begin{array} { c c c c } 8 & - 1 & 1 & 0 \\ 0 & - 1 & 1 & 0 \\ 7 & 1 & 2 & 0 \\ 0 & 0 & 1 & 1 \end{array} \right] \left[ \begin{array} { l } a \\ b \\ c \\ a \end{array} \right] = \left[ \begin{array} { l } 1 \\ 4 \\ 1 \\ 1 \end{array} \right]
C) [8110041071200111][abca]=[0001]\left[ \begin{array} { l l l l } 8 & 1 & 1 & 0 \\ 0 & 4 & 1 & 0 \\ 7 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{array} \right] \left[ \begin{array} { l } a \\ b \\ c \\ a \end{array} \right] = \left[ \begin{array} { l } 0 \\ 0 \\ 0 \\ 1 \end{array} \right]
D) [111411112][abc]=[807]\left[ \begin{array} { c c c } 1 & - 1 & 1 \\ 4 & - 1 & 1 \\ 1 & 1 & 2 \end{array} \right] \left[ \begin{array} { l } a \\ b \\ c \end{array} \right] = \left[ \begin{array} { l } 8 \\ 0 \\ 7 \end{array} \right]
E) none

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions