Solved

Find v| \mathrm { v } | And u+y| \mathbf { u } + \mathbf { y } |

Question 85

Multiple Choice

Find v| \mathrm { v } | and u+y| \mathbf { u } + \mathbf { y } | , given that u=j\mathbf { u } = - \mathbf { j } and v=i\mathbf { v } = \mathbf { i }


A) v=1| \mathrm { v } | = 1
, u+v=2| \mathbf { u } + \mathbf { v } | = \sqrt { 2 }

B) v=1| v | = - 1
, u+v=2| \mathbf { u } + \mathbf { v } | = - \sqrt { 2 }

C) v=2| \mathrm { v } | = \sqrt { 2 }
, u+y=1| \mathbf { u } + \mathbf { y } | = 1

D) v=2| \mathrm { v } | = \sqrt { 2 }
, u+v=2| \mathbf { u } + \mathbf { v } | = \sqrt { 2 }

E) none

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions