Solved

Apply Taylor's Theorem to Find the Power Series Centered At c

Question 9

Multiple Choice

Apply Taylor's Theorem to find the power series centered at c=12c = 12 for the function f(x) =exf ( x ) = e ^ { x } .


A) e12n=0(x) nn!e ^ { 12 } \sum _ { n = 0 } ^ { \infty } \frac { ( x ) ^ { n } } { n ! }
B) n=1(x12) n(n+1) !\sum _ { n = 1 } ^ { \infty } \frac { ( x - 12 ) ^ { n } } { ( n + 1 ) ! }
C) e12n=0(x12) nn!e ^ { 12 } \sum _ { n = 0 } ^ { \infty } \frac { ( x - 12 ) ^ { n } } { n ! }
D) e12n=0(x) n+1(n+1) !e ^ { 12 } \sum _ { n = 0 } ^ { \infty } \frac { ( x ) ^ { n + 1 } } { ( n + 1 ) ! }
E) n=0(x12) 2n2n!\sum _ { n = 0 } ^ { \infty } \frac { ( x - 12 ) ^ { 2 n } } { 2 n ! }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions