Solved

Apply Taylor's Theorem to Find the Power Series Centered At c

Question 75

Multiple Choice

Apply Taylor's Theorem to find the power series centered at c=0c = 0 for the function f(x) =e12xf ( x ) = e ^ { 12 x } .


A) n=0(12x) n+1(n+1) !\sum _ { n = 0 } ^ { \infty } \frac { ( 12 x ) ^ { n + 1 } } { ( n + 1 ) ! }
B) n=0(12x) n(n+1) !\sum _ { n = 0 } ^ { \infty } \frac { ( 12 x ) ^ { n } } { ( n + 1 ) ! }
C) n=0(12x) nn!\sum _ { n = 0 } ^ { \infty } \frac { ( 12 x ) ^ { n } } { n ! }
D) n=1(12x) n+1n!\sum _ { n = 1 } ^ { \infty } \frac { ( 12 x ) ^ { n + 1 } } { n ! }
E) n=0(12x) n+1n!\sum _ { n = 0 } ^ { \infty } \frac { ( 12 x ) ^ { n + 1 } } { n ! }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions