Solved

Find the Derivative of the Function f(θ)=37sin23θf ( \theta ) = \frac { 3 } { 7 } \sin ^ { 2 } 3 \theta

Question 51

Multiple Choice

Find the derivative of the function. f(θ) =37sin23θf ( \theta ) = \frac { 3 } { 7 } \sin ^ { 2 } 3 \theta


A) f(θ) =3sin3θcos3θ7f ^ { \prime } ( \theta ) = \frac { 3 \sin 3 \theta \cos 3 \theta } { 7 }
B) f(θ) =18sin3θcos3θ7f ^ { \prime } ( \theta ) = \frac { 18 \sin 3 \theta \cos 3 \theta } { 7 }
C) f(θ) =18cos3θ7f ^ { \prime } ( \theta ) = \frac { 18 \cos 3 \theta } { 7 }
D) f(θ) =18sin3θcos3θ7f ^ { \prime } ( \theta ) = - \frac { 18 \sin 3 \theta \cos 3 \theta } { 7 }
E) f(θ) =18sin3θ7f ^ { \prime } ( \theta ) = \frac { 18 \sin 3 \theta } { 7 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions