Solved

Find the Supply Function x=f(p)x = f ( p ) That Satisfies

Question 60

Multiple Choice

Find the supply function x=f(p) x = f ( p ) that satisfies dxdp=pp225\frac { d x } { d p } = p \sqrt { p ^ { 2 } - 25 } and the initial condition x = 700 when p=$13p = \$ 13 .


A) x=13(p225) 3/2+124x = \frac { 1 } { 3 } \left( p ^ { 2 } - 25 \right) ^ { 3 / 2 } + 124
B) x=13(p225) 1/2+696x = \frac { 1 } { 3 } \left( p ^ { 2 } - 25 \right) ^ { 1 / 2 } + 696
C) x=13(p5) +124x = \frac { 1 } { 3 } ( p - 5 ) + 124
D) x=15(p225) 3/2+127x = \frac { 1 } { 5 } \left( p ^ { 2 } - 25 \right) ^ { 3 / 2 } + 127
E) x=1p1(p225) 1/2+699x = \frac { 1 } { p - 1 } \left( p ^ { 2 } - 25 \right) ^ { 1 / 2 } + 699

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions