Solved

Identify the Open Intervals Where the Function f(x)=x24x2f ( x ) = x \sqrt { 24 - x ^ { 2 } }

Question 75

Multiple Choice

Identify the open intervals where the function f(x) =x24x2f ( x ) = x \sqrt { 24 - x ^ { 2 } } is increasing or decreasing.


A) decreasing: (,12) ( - \infty , \sqrt { 12 } ) ; increasing: (12,) ( \sqrt { 12 } , \infty )
B) increasing: (12,12) ( - \sqrt { 12 } , \sqrt { 12 } ) ; decreasing: (24,12) (12,24) ( - \sqrt { 24 } , - \sqrt { 12 } ) \cup ( \sqrt { 12 } , \sqrt { 24 } )
C) increasing: (,24) ( - \infty , \sqrt { 24 } ) ; decreasing: (24,) ( \sqrt { 24 } , \infty )
D) increasing: (24,12) (12,24) ( - \sqrt { 24 } , - \sqrt { 12 } ) \cup ( \sqrt { 12 } , \sqrt { 24 } ) ; decreasing: (12,12) ( - \sqrt { 12 } , \sqrt { 12 } )
E) decreasing for all x

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions