Solved

Sketch a Graph of a Function F Having the Following

Question 15

Multiple Choice

Sketch a graph of a function f having the following characteristics. f(1) =f(3) =0f(x) <0 if x<2f(2) =0f(x) >0 if x>2f(x) >0\begin{array} { l } f ( - 1 ) = f ( - 3 ) = 0 \\f ^ { \prime }( x ) < 0 \text { if } x < - 2 \\f ^ { \prime } ( - 2 ) = 0 \\f ^ { \prime } ( x ) > 0 \text { if } x > - 2 \\f ^ { \prime } ( x ) > 0\end{array}


A)  Sketch a graph of a function f having the following characteristics.  \begin{array} { l }  f ( - 1 )  = f ( - 3 )  = 0 \\ f ^ { \prime }( x )  < 0 \text { if } x < - 2 \\ f ^ { \prime } ( - 2 )  = 0 \\ f ^ { \prime } ( x )  > 0 \text { if } x > - 2 \\ f ^ { \prime } ( x )  > 0 \end{array}  A)    B)    C)    D)    E)
B)  Sketch a graph of a function f having the following characteristics.  \begin{array} { l }  f ( - 1 )  = f ( - 3 )  = 0 \\ f ^ { \prime }( x )  < 0 \text { if } x < - 2 \\ f ^ { \prime } ( - 2 )  = 0 \\ f ^ { \prime } ( x )  > 0 \text { if } x > - 2 \\ f ^ { \prime } ( x )  > 0 \end{array}  A)    B)    C)    D)    E)
C)  Sketch a graph of a function f having the following characteristics.  \begin{array} { l }  f ( - 1 )  = f ( - 3 )  = 0 \\ f ^ { \prime }( x )  < 0 \text { if } x < - 2 \\ f ^ { \prime } ( - 2 )  = 0 \\ f ^ { \prime } ( x )  > 0 \text { if } x > - 2 \\ f ^ { \prime } ( x )  > 0 \end{array}  A)    B)    C)    D)    E)
D)  Sketch a graph of a function f having the following characteristics.  \begin{array} { l }  f ( - 1 )  = f ( - 3 )  = 0 \\ f ^ { \prime }( x )  < 0 \text { if } x < - 2 \\ f ^ { \prime } ( - 2 )  = 0 \\ f ^ { \prime } ( x )  > 0 \text { if } x > - 2 \\ f ^ { \prime } ( x )  > 0 \end{array}  A)    B)    C)    D)    E)
E)  Sketch a graph of a function f having the following characteristics.  \begin{array} { l }  f ( - 1 )  = f ( - 3 )  = 0 \\ f ^ { \prime }( x )  < 0 \text { if } x < - 2 \\ f ^ { \prime } ( - 2 )  = 0 \\ f ^ { \prime } ( x )  > 0 \text { if } x > - 2 \\ f ^ { \prime } ( x )  > 0 \end{array}  A)    B)    C)    D)    E)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions