Solved

Find the Derivative of the Following Function Using the Limiting f(x)=3x4f ( x ) = \sqrt { 3 x - 4 }

Question 65

Multiple Choice

Find the derivative of the following function using the limiting process. f(x) =3x4f ( x ) = \sqrt { 3 x - 4 }


A) f(x) =323x4f ^ { \prime } ( x ) = \frac { 3 } { 2 \sqrt { 3 x - 4 } }  Find the derivative of the following function using the limiting process.  f ( x )  = \sqrt { 3 x - 4 }  A)   f ^ { \prime } ( x )  = \frac { 3 } { 2 \sqrt { 3 x - 4 } }    B)   f ^ { \prime } ( x )  = - \frac { 3 } { 2 \sqrt { 3 x - 4 } }  C)   f ^ { \prime } ( x )  = \frac { 3 } { 2 } ( 3 x - 4 )  ^ { 1 / 2 }  D)   f ^ { \prime } ( x )  = - \frac { 3 } { \sqrt { 3 x - 4 } }  E) either B or D
B) f(x) =323x4f ^ { \prime } ( x ) = - \frac { 3 } { 2 \sqrt { 3 x - 4 } }
C) f(x) =32(3x4) 1/2f ^ { \prime } ( x ) = \frac { 3 } { 2 } ( 3 x - 4 ) ^ { 1 / 2 }
D) f(x) =33x4f ^ { \prime } ( x ) = - \frac { 3 } { \sqrt { 3 x - 4 } }
E) either B or D

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions