Solved

Find the Inverse Function Informally f(x)=2xf ( x ) = 2 x

Question 63

Multiple Choice

Find the inverse function informally f(x) =2xf ( x ) = 2 x . Verify that f(f1(x) ) =xf \left( f ^ { - 1 } ( x ) \right) = x and f1(f(x) ) =xf ^ { - 1 } ( f ( x ) ) = x


A) f1(x) =x2f ^ { - 1 } ( x ) = \frac { x } { 2 } , f(f1(x) ) =x1f \left( f ^ { - 1 } ( x ) \right) = x ^ { - 1 } , f1(f(x) ) =xf ^ { - 1 } ( f ( x ) ) = x
B) f1(x) =x2f ^ { - 1 } ( x ) = \frac { x } { 2 } , f(f1(x) ) =2xf \left( f ^ { - 1 } ( x ) \right) = 2 x , f1(f(x) ) =3xf ^ { - 1 } ( f ( x ) ) = 3 x
C) f1(x) =x2f ^ { - 1 } ( x ) = \frac { x } { 2 } , f(f1(x) ) =xf \left( f ^ { - 1 } ( x ) \right) = x , f1(f(x) ) =2xf ^ { - 1 } ( f ( x ) ) = 2 x
D) f1(x) =x2f ^ { - 1 } ( x ) = \frac { x } { 2 } , f(f1(x) ) =3xf \left( f ^ { - 1 } ( x ) \right) = 3 x , f1(f(x) ) =xf ^ { - 1 } ( f ( x ) ) = x
E) f1(x) =x2f ^ { - 1 } ( x ) = \frac { x } { 2 } , f(f1(x) ) =xf \left( f ^ { - 1 } ( x ) \right) = x , f1(f(x) ) =xf ^ { - 1 } ( f ( x ) ) = x

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions