Solved

Sketch the Graphs of Inverse Functions f(x)=x52,f1(x)=x+25f ( x ) = x ^ { 5 } - 2 , f ^ { - 1 } ( x ) = \sqrt [ 5 ] { x + 2 }

Question 20

Multiple Choice

Sketch the graphs of inverse functions f(x) =x52,f1(x) =x+25f ( x ) = x ^ { 5 } - 2 , f ^ { - 1 } ( x ) = \sqrt [ 5 ] { x + 2 } in the same coordinate plane and show that the graphs are reflections of each other in the line y=xy = x


A)  Sketch the graphs of inverse functions  f ( x )  = x ^ { 5 } - 2 , f ^ { - 1 } ( x )  = \sqrt [ 5 ] { x + 2 }  in the same coordinate plane and show that the graphs are reflections of each other in the line  y = x  A)     \begin{array} { l l r r }  x & - 1 & 0 & 1 \\ f ( x )  & - 3 & - 2 & - 1 \\\\ x & - 4 & - 2 & - 1 \\ f ^ { - 1 } ( x )  & - 1 & 0 & 1 \end{array}  B)     \begin{array} { l lrr }  x & - 1 & 0 & 1 \\ f ( x )  & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x )  & - 1 & 2 &  1 \end{array}  C)     \begin{array} { l r rr }  x & 0 & 0 & 1 \\ f ( x )  & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x )  & - 1 & 0 &  1 \end{array}  D)     \begin{array} { l l rr }  x & - 1 & 0 & 1 \\ f ( x )  & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x )  & - 1 & 0 & 1 \end{array}  E)     \begin{array}{llrr} x & -1 & 0 & -1 \\ f(x)  & -3 & -2 & -1 \\\\ x & -3& 2& -1 \\ f^{-1}(x)  & -1 & -2 & 1 \end{array} x101f(x) 321x421f1(x) 101\begin{array} { l l r r } x & - 1 & 0 & 1 \\f ( x ) & - 3 & - 2 & - 1 \\\\x & - 4 & - 2 & - 1 \\f ^ { - 1 } ( x ) & - 1 & 0 & 1\end{array}
B)  Sketch the graphs of inverse functions  f ( x )  = x ^ { 5 } - 2 , f ^ { - 1 } ( x )  = \sqrt [ 5 ] { x + 2 }  in the same coordinate plane and show that the graphs are reflections of each other in the line  y = x  A)     \begin{array} { l l r r }  x & - 1 & 0 & 1 \\ f ( x )  & - 3 & - 2 & - 1 \\\\ x & - 4 & - 2 & - 1 \\ f ^ { - 1 } ( x )  & - 1 & 0 & 1 \end{array}  B)     \begin{array} { l lrr }  x & - 1 & 0 & 1 \\ f ( x )  & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x )  & - 1 & 2 &  1 \end{array}  C)     \begin{array} { l r rr }  x & 0 & 0 & 1 \\ f ( x )  & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x )  & - 1 & 0 &  1 \end{array}  D)     \begin{array} { l l rr }  x & - 1 & 0 & 1 \\ f ( x )  & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x )  & - 1 & 0 & 1 \end{array}  E)     \begin{array}{llrr} x & -1 & 0 & -1 \\ f(x)  & -3 & -2 & -1 \\\\ x & -3& 2& -1 \\ f^{-1}(x)  & -1 & -2 & 1 \end{array} x101f(x) 321x321f1(x) 121\begin{array} { l lrr } x & - 1 & 0 & 1 \\f ( x ) & - 3 & - 2 & - 1 \\\\x & - 3 & - 2 & -1\\f ^ { - 1 } ( x ) & - 1 & 2 & 1\end{array}
C)  Sketch the graphs of inverse functions  f ( x )  = x ^ { 5 } - 2 , f ^ { - 1 } ( x )  = \sqrt [ 5 ] { x + 2 }  in the same coordinate plane and show that the graphs are reflections of each other in the line  y = x  A)     \begin{array} { l l r r }  x & - 1 & 0 & 1 \\ f ( x )  & - 3 & - 2 & - 1 \\\\ x & - 4 & - 2 & - 1 \\ f ^ { - 1 } ( x )  & - 1 & 0 & 1 \end{array}  B)     \begin{array} { l lrr }  x & - 1 & 0 & 1 \\ f ( x )  & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x )  & - 1 & 2 &  1 \end{array}  C)     \begin{array} { l r rr }  x & 0 & 0 & 1 \\ f ( x )  & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x )  & - 1 & 0 &  1 \end{array}  D)     \begin{array} { l l rr }  x & - 1 & 0 & 1 \\ f ( x )  & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x )  & - 1 & 0 & 1 \end{array}  E)     \begin{array}{llrr} x & -1 & 0 & -1 \\ f(x)  & -3 & -2 & -1 \\\\ x & -3& 2& -1 \\ f^{-1}(x)  & -1 & -2 & 1 \end{array} x001f(x) 321x321f1(x) 101\begin{array} { l r rr } x & 0 & 0 & 1 \\f ( x ) & - 3 & - 2 & - 1 \\\\x & - 3 & - 2 & -1\\f ^ { - 1 } ( x ) & - 1 & 0 & 1\end{array}
D)  Sketch the graphs of inverse functions  f ( x )  = x ^ { 5 } - 2 , f ^ { - 1 } ( x )  = \sqrt [ 5 ] { x + 2 }  in the same coordinate plane and show that the graphs are reflections of each other in the line  y = x  A)     \begin{array} { l l r r }  x & - 1 & 0 & 1 \\ f ( x )  & - 3 & - 2 & - 1 \\\\ x & - 4 & - 2 & - 1 \\ f ^ { - 1 } ( x )  & - 1 & 0 & 1 \end{array}  B)     \begin{array} { l lrr }  x & - 1 & 0 & 1 \\ f ( x )  & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x )  & - 1 & 2 &  1 \end{array}  C)     \begin{array} { l r rr }  x & 0 & 0 & 1 \\ f ( x )  & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x )  & - 1 & 0 &  1 \end{array}  D)     \begin{array} { l l rr }  x & - 1 & 0 & 1 \\ f ( x )  & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x )  & - 1 & 0 & 1 \end{array}  E)     \begin{array}{llrr} x & -1 & 0 & -1 \\ f(x)  & -3 & -2 & -1 \\\\ x & -3& 2& -1 \\ f^{-1}(x)  & -1 & -2 & 1 \end{array} x101f(x) 321x321f1(x) 101\begin{array} { l l rr } x & - 1 & 0 & 1 \\f ( x ) & - 3 & - 2 & - 1 \\\\x & - 3 & - 2 & -1\\f ^ { - 1 } ( x ) & - 1 & 0 & 1\end{array}
E)  Sketch the graphs of inverse functions  f ( x )  = x ^ { 5 } - 2 , f ^ { - 1 } ( x )  = \sqrt [ 5 ] { x + 2 }  in the same coordinate plane and show that the graphs are reflections of each other in the line  y = x  A)     \begin{array} { l l r r }  x & - 1 & 0 & 1 \\ f ( x )  & - 3 & - 2 & - 1 \\\\ x & - 4 & - 2 & - 1 \\ f ^ { - 1 } ( x )  & - 1 & 0 & 1 \end{array}  B)     \begin{array} { l lrr }  x & - 1 & 0 & 1 \\ f ( x )  & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x )  & - 1 & 2 &  1 \end{array}  C)     \begin{array} { l r rr }  x & 0 & 0 & 1 \\ f ( x )  & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x )  & - 1 & 0 &  1 \end{array}  D)     \begin{array} { l l rr }  x & - 1 & 0 & 1 \\ f ( x )  & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x )  & - 1 & 0 & 1 \end{array}  E)     \begin{array}{llrr} x & -1 & 0 & -1 \\ f(x)  & -3 & -2 & -1 \\\\ x & -3& 2& -1 \\ f^{-1}(x)  & -1 & -2 & 1 \end{array}
x101f(x) 321x321f1(x) 121\begin{array}{llrr}x & -1 & 0 & -1 \\f(x) & -3 & -2 & -1 \\\\x & -3& 2& -1 \\f^{-1}(x) & -1 & -2 & 1\end{array}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions