Solved

If Two Random Samples of Sizes n1n _ { 1 }

Question 29

Multiple Choice

If two random samples of sizes n1n _ { 1 } and n2n _ { 2 } are selected independently from two populations with variances σ12\sigma _ { 1 } ^ { 2 } and σ22\sigma _ { 2 } ^ { 2 } , then the standard error of the sampling distribution of the sample mean difference, Xˉ1Xˉ2\bar { X } _ { 1 } - \bar { X } _ { 2 } , equals:


A) (σ12σ22) /n1n2\sqrt { \left( \sigma _ { 1 } ^ { 2 } - \sigma _ { 2 } ^ { 2 } \right) / n _ { 1 } n _ { 2 } } .
B) (σ12+σ22) /n1n2\sqrt { \left( \sigma _ { 1 } ^ { 2 } + \sigma _ { 2 } ^ { 2 } \right) / n _ { 1 } n _ { 2 } } .
C) σ12n1σ22n2\sqrt { \frac { \sigma _ { 1 } ^ { 2 } } { n _ { 1 } } - \frac { \sigma _ { 2 } ^ { 2 } } { n _ { 2 } } } .
D) σ12n1+σ22n2\sqrt { \frac { \sigma _ { 1 } ^ { 2 } } { n _ { 1 } } + \frac { \sigma _ { 2 } ^ { 2 } } { n _ { 2 } } } .

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions