Solved

The Switch in the Circuit Shown Below Has Been Closed =0= 0

Question 10

Essay

The switch in the circuit shown below has been closed for a long time before it is opened at t =0= 0 . Find the voltage v(t)\mathrm { v } ( \mathrm { t } ) across the capacitor for t0\mathrm { t } \geq 0 . Assume R1=3kΩ,R2=6kΩ,R3=2\mathrm { R } _ { 1 } = 3 \mathrm { k } \Omega , \mathrm { R } _ { 2 } = 6 \mathrm { k } \Omega , \mathrm { R } _ { 3 } = 2 kΩ,R4=2kΩ,R5=4kΩ,Is=0.6 mA, Vs=6 V,C=0.08μF\mathrm { k } \Omega , \mathrm { R } _ { 4 } = 2 \mathrm { k } \Omega , \mathrm { R } _ { 5 } = 4 \mathrm { k } \Omega , \mathrm { I } _ { \mathrm { s } } = 0.6 \mathrm {~mA} , \mathrm {~V} _ { \mathrm { s } } = 6 \mathrm {~V} , \mathrm { C } = 0.08 \mu \mathrm { F } .  The switch in the circuit shown below has been closed for a long time before it is opened at t  = 0 . Find the voltage  \mathrm { v } ( \mathrm { t } )  across the capacitor for  \mathrm { t } \geq 0 . Assume  \mathrm { R } _ { 1 } = 3 \mathrm { k } \Omega , \mathrm { R } _ { 2 } = 6 \mathrm { k } \Omega , \mathrm { R } _ { 3 } = 2   \mathrm { k } \Omega , \mathrm { R } _ { 4 } = 2 \mathrm { k } \Omega , \mathrm { R } _ { 5 } = 4 \mathrm { k } \Omega , \mathrm { I } _ { \mathrm { s } } = 0.6 \mathrm {~mA} , \mathrm {~V} _ { \mathrm { s } } = 6 \mathrm {~V} , \mathrm { C } = 0.08 \mu \mathrm { F } .

Correct Answer:

verifed

Verified

\[\begin{array} { l }
R _ { a } = R _ {...

View Answer

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions