Solved

Let U(x,y)=xy\mathrm { U } ( \mathrm { x } , \mathrm { y } ) = \sqrt { x y }

Question 72

Multiple Choice

Let U(x,y) =xy\mathrm { U } ( \mathrm { x } , \mathrm { y } ) = \sqrt { x y } with MUx=y2x\mathrm { MU } _ { \mathrm { x } } = \frac { \sqrt { y } } { 2 \sqrt { x } } and MUy=x2y\mathrm { MU } _ { \mathrm { y } } = \frac { \sqrt { x } } { 2 \sqrt { y } } . Let I=$100,Px=$25\mathrm { I } = \$ 100 , \mathrm { P } _ { \mathrm { x } } = \$ 25 and Py=$10\mathrm { P } _ { \mathrm { y } } = \$ 10 be the initial set of prices and income. Now, let Px\mathrm { P } _ { \mathrm { x } } fall to $10\$ 10 . What is the approximate compensating variation for this change in prices?


A) 24
B) 30
C) 34
D) 40

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions