Solved

Find the Critical Values t0,\mathrm { t } _ { 0 } ,

Question 28

Multiple Choice

Find the critical values, t0,\mathrm { t } _ { 0 } , to test the claim that μ1=μ2\mu _ { 1 } = \mu 2 Two samples are random, independent, and come from populations that are normal. The sample statistics are given below. Assume that σ12σ22\sigma _ { 1 } ^ { 2 } \neq \sigma _ { 2 } ^ { 2 } \text {. } Use α\alpha = 0.05. n1=25x1=17 s1=1.5\begin{array} { l } \mathrm { n } _ { 1 } = 25 \\\overline { \mathrm { x } } 1 = 17 \\\mathrm {~s} _ { 1 } = 1.5\end{array} n2=30x2=15 s2=1.9\begin{array} { l } \mathrm { n } _ { 2 } = 30 \\\overline { \mathrm { x } _ { 2 } } = 15 \\\mathrm {~s} _ { 2 } = 1.9\end{array}


A) ±2.064\pm 2.064
B) ±2.797\pm 2.797
C) ±1.711\pm 1.711
D) ± ±2.492\pm 2.492

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions