Solved

A One-To-One Function F Is Given  Find f1(x)\text { Find } \mathrm { f } ^ { - 1 } ( \mathrm { x } )

Question 157

Multiple Choice

A one-to-one function f is given.  Find f1(x) \text { Find } \mathrm { f } ^ { - 1 } ( \mathrm { x } ) and graph fwith a solid line and f1(x) f ^ { - 1 } ( x ) with a dotted line on the same axes.
- f(x) =x+5,x5f ( x ) = \sqrt { x + 5 } , x \geq - 5
 A one-to-one function f is given.  \text { Find } \mathrm { f } ^ { - 1 } ( \mathrm { x } )   and graph fwith a solid line and  f ^ { - 1 } ( x )   with a dotted line on the same axes. - f ( x )  = \sqrt { x + 5 } , x \geq - 5    A)   f ^ { - 1 } ( x )  = x ^ { 2 } + 5 , x \geq 0    B)   \mathrm { f } ^ { - 1 } ( \mathrm { x } )  = \mathrm { x } ^ { 2 } - 5 , \mathrm { x } \geq 0    C)   f ^ { - 1 } ( x )  = x ^ { 2 } + 5 , x \geq 0    D)   f ^ { - 1 } ( x )  = - x ^ { 2 } + 5 , x \leq 0


A) f1(x) =x2+5,x0f ^ { - 1 } ( x ) = x ^ { 2 } + 5 , x \geq 0
 A one-to-one function f is given.  \text { Find } \mathrm { f } ^ { - 1 } ( \mathrm { x } )   and graph fwith a solid line and  f ^ { - 1 } ( x )   with a dotted line on the same axes. - f ( x )  = \sqrt { x + 5 } , x \geq - 5    A)   f ^ { - 1 } ( x )  = x ^ { 2 } + 5 , x \geq 0    B)   \mathrm { f } ^ { - 1 } ( \mathrm { x } )  = \mathrm { x } ^ { 2 } - 5 , \mathrm { x } \geq 0    C)   f ^ { - 1 } ( x )  = x ^ { 2 } + 5 , x \geq 0    D)   f ^ { - 1 } ( x )  = - x ^ { 2 } + 5 , x \leq 0
B) f1(x) =x25,x0\mathrm { f } ^ { - 1 } ( \mathrm { x } ) = \mathrm { x } ^ { 2 } - 5 , \mathrm { x } \geq 0
 A one-to-one function f is given.  \text { Find } \mathrm { f } ^ { - 1 } ( \mathrm { x } )   and graph fwith a solid line and  f ^ { - 1 } ( x )   with a dotted line on the same axes. - f ( x )  = \sqrt { x + 5 } , x \geq - 5    A)   f ^ { - 1 } ( x )  = x ^ { 2 } + 5 , x \geq 0    B)   \mathrm { f } ^ { - 1 } ( \mathrm { x } )  = \mathrm { x } ^ { 2 } - 5 , \mathrm { x } \geq 0    C)   f ^ { - 1 } ( x )  = x ^ { 2 } + 5 , x \geq 0    D)   f ^ { - 1 } ( x )  = - x ^ { 2 } + 5 , x \leq 0
C) f1(x) =x2+5,x0f ^ { - 1 } ( x ) = x ^ { 2 } + 5 , x \geq 0
 A one-to-one function f is given.  \text { Find } \mathrm { f } ^ { - 1 } ( \mathrm { x } )   and graph fwith a solid line and  f ^ { - 1 } ( x )   with a dotted line on the same axes. - f ( x )  = \sqrt { x + 5 } , x \geq - 5    A)   f ^ { - 1 } ( x )  = x ^ { 2 } + 5 , x \geq 0    B)   \mathrm { f } ^ { - 1 } ( \mathrm { x } )  = \mathrm { x } ^ { 2 } - 5 , \mathrm { x } \geq 0    C)   f ^ { - 1 } ( x )  = x ^ { 2 } + 5 , x \geq 0    D)   f ^ { - 1 } ( x )  = - x ^ { 2 } + 5 , x \leq 0
D) f1(x) =x2+5,x0f ^ { - 1 } ( x ) = - x ^ { 2 } + 5 , x \leq 0
 A one-to-one function f is given.  \text { Find } \mathrm { f } ^ { - 1 } ( \mathrm { x } )   and graph fwith a solid line and  f ^ { - 1 } ( x )   with a dotted line on the same axes. - f ( x )  = \sqrt { x + 5 } , x \geq - 5    A)   f ^ { - 1 } ( x )  = x ^ { 2 } + 5 , x \geq 0    B)   \mathrm { f } ^ { - 1 } ( \mathrm { x } )  = \mathrm { x } ^ { 2 } - 5 , \mathrm { x } \geq 0    C)   f ^ { - 1 } ( x )  = x ^ { 2 } + 5 , x \geq 0    D)   f ^ { - 1 } ( x )  = - x ^ { 2 } + 5 , x \leq 0

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions