Multiple Choice
In order to justify the construction of the angle-bisector of
, we verify that two triangles are congruent by which method?
A) SAS
B) ASA
C) SSS
D) HL
Correct Answer:

Verified
Correct Answer:
Verified
Q61: Given that <img src="https://d2lvgg3v3hfg70.cloudfront.net/TBX8811/.jpg" alt="Given that
Q62: Given that <img src="https://d2lvgg3v3hfg70.cloudfront.net/TBX8811/.jpg" alt="Given that
Q63: If <img src="https://d2lvgg3v3hfg70.cloudfront.net/TBX8811/.jpg" alt="If in
Q64: Given that <img src="https://d2lvgg3v3hfg70.cloudfront.net/TBX8811/.jpg" alt="Given that
Q66: Given that point P is the midpoint
Q67: In the figure, <img src="https://d2lvgg3v3hfg70.cloudfront.net/TBX8811/.jpg" alt="In the
Q68: Given that <img src="https://d2lvgg3v3hfg70.cloudfront.net/TBX8811/.jpg" alt="Given that
Q159: In a right triangle, the length of
Q694: In the construction a regular hexagon, we
Q837: The reason for the congruence of two