Not Answered
Externally tangent circles P and Q touch at point T and have the line of centers . How does one construct the common internal tangent for circles P and Q ?
Correct Answer:

Verified
Correct Answer:
Verified
Q14: If m <img src="https://d2lvgg3v3hfg70.cloudfront.net/TBX8811/.jpg" alt="If m
Q15: In the circle, m <img src="https://d2lvgg3v3hfg70.cloudfront.net/TBX8811/.jpg" alt="In
Q16: <img src="https://d2lvgg3v3hfg70.cloudfront.net/TBX8811/.jpg" alt=" is tangent to
Q17: In the figure, suppose that auxiliary line
Q20: In the figure, secants <img src="https://d2lvgg3v3hfg70.cloudfront.net/TBX8811/.jpg" alt="In
Q21: In <img src="https://d2lvgg3v3hfg70.cloudfront.net/TBX8811/.jpg" alt="In ,
Q23: In the figure, chords <img src="https://d2lvgg3v3hfg70.cloudfront.net/TBX8811/.jpg" alt="In
Q447: When two secants intersect at a point
Q625: Two circles that are internally tangent have
Q877: <img src="https://d2lvgg3v3hfg70.cloudfront.net/TB7237/.jpg" alt=" -The circles shown