Solved

Use Cramer S Rule to Solve the System for Z {x+yz=48x6y+7z=1x+9yz=2\left\{ \begin{array} { l } x + y - z = 4 \\8 x - 6 y + 7 z = 1 \\x + 9 y - z = - 2\end{array} \right.

Question 214

Multiple Choice

Use Cramer s Rule to solve the system for z. {x+yz=48x6y+7z=1x+9yz=2\left\{ \begin{array} { l } x + y - z = 4 \\8 x - 6 y + 7 z = 1 \\x + 9 y - z = - 2\end{array} \right.


A) z=411167291111867191z = \frac { \left| \begin{array} { c c c } 4 & 1 & - 1 \\1 & - 6 & 7 \\- 2 & 9 & - 1\end{array} \right| } { \left| \begin{array} { c c c } 1 & 1 & - 1 \\8 & - 6 & 7 \\1 & 9 & - 1\end{array} \right| }
B) z=114861192111867191z = \frac { \left| \begin{array} { c c c } 1 & 1 & 4 \\8 & - 6 & 1 \\1 & 9 & - 2\end{array} \right| } { \left| \begin{array} { c c c } 1 & 1 & - 1 \\8 & - 6 & 7 \\1 & 9 & - 1\end{array} \right| }
C) z=141817192111867191z = \frac { \left| \begin{array} { c c c } 1 & 4 & - 1 \\8 & 1 & 7 \\1 & 9 & - 2\end{array} \right| } { \left| \begin{array} { c c c } 1 & 1 & - 1 \\8 & - 6 & 7 \\1 & 9 & - 1\end{array} \right| }
D) z=111867191114861192z = \frac { \left| \begin{array} { c c c } 1 & 1 & - 1 \\8 & - 6 & 7 \\1 & 9 & - 1\end{array} \right| } { \left| \begin{array} { c c c } 1 & 1 & 4 \\8 & - 6 & 1 \\1 & 9 & - 2\end{array} \right| }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions