Solved

Solve the Inequality 65x11| 6 - 5 x | \geq 11

Question 93

Multiple Choice

Solve the inequality. Graph the solution set and write it using interval notation. 65x11| 6 - 5 x | \geq 11


A) x(1,) x \in ( - 1 , \infty ) ;
 Solve the inequality. Graph the solution set and write it using interval notation.  | 6 - 5 x | \geq 11  A)   x \in ( - 1 , \infty )  ;   B)   x \in \left[ - 1 , \frac { 17 } { 5 } \right] ;   C)   x \in ( - \infty , - 1 ] \cup \left[ \frac { 17 } { 5 } , \infty \right)  ;   D)   x \in \left( - \infty , \frac { 17 } { 5 } \right)  ;    E)  no solution;
B) x[1,175]x \in \left[ - 1 , \frac { 17 } { 5 } \right] ;
 Solve the inequality. Graph the solution set and write it using interval notation.  | 6 - 5 x | \geq 11  A)   x \in ( - 1 , \infty )  ;   B)   x \in \left[ - 1 , \frac { 17 } { 5 } \right] ;   C)   x \in ( - \infty , - 1 ] \cup \left[ \frac { 17 } { 5 } , \infty \right)  ;   D)   x \in \left( - \infty , \frac { 17 } { 5 } \right)  ;    E)  no solution;
C) x(,1][175,) x \in ( - \infty , - 1 ] \cup \left[ \frac { 17 } { 5 } , \infty \right) ;
 Solve the inequality. Graph the solution set and write it using interval notation.  | 6 - 5 x | \geq 11  A)   x \in ( - 1 , \infty )  ;   B)   x \in \left[ - 1 , \frac { 17 } { 5 } \right] ;   C)   x \in ( - \infty , - 1 ] \cup \left[ \frac { 17 } { 5 } , \infty \right)  ;   D)   x \in \left( - \infty , \frac { 17 } { 5 } \right)  ;    E)  no solution;
D) x(,175) x \in \left( - \infty , \frac { 17 } { 5 } \right) ;
 Solve the inequality. Graph the solution set and write it using interval notation.  | 6 - 5 x | \geq 11  A)   x \in ( - 1 , \infty )  ;   B)   x \in \left[ - 1 , \frac { 17 } { 5 } \right] ;   C)   x \in ( - \infty , - 1 ] \cup \left[ \frac { 17 } { 5 } , \infty \right)  ;   D)   x \in \left( - \infty , \frac { 17 } { 5 } \right)  ;    E)  no solution;
E) no solution;
 Solve the inequality. Graph the solution set and write it using interval notation.  | 6 - 5 x | \geq 11  A)   x \in ( - 1 , \infty )  ;   B)   x \in \left[ - 1 , \frac { 17 } { 5 } \right] ;   C)   x \in ( - \infty , - 1 ] \cup \left[ \frac { 17 } { 5 } , \infty \right)  ;   D)   x \in \left( - \infty , \frac { 17 } { 5 } \right)  ;    E)  no solution;

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions