Solved

Use the Formula 1C=1C1+1C2+1C3\frac { 1 } { C } = \frac { 1 } { C _ { 1 } } + \frac { 1 } { C _ { 2 } } + \frac { 1 } { C _ { 3 } }

Question 81

Multiple Choice

Use the formula 1C=1C1+1C2+1C3\frac { 1 } { C } = \frac { 1 } { C _ { 1 } } + \frac { 1 } { C _ { 2 } } + \frac { 1 } { C _ { 3 } } . Given C1=6.45×107FC _ { 1 } = 6.45 \times 10 ^ { - 7 } F , C2=5.25×106FC _ { 2 } = 5.25 \times 10 ^ { - 6 } F and C3=1.29×108 FC _ { 3 } = 1.29 \times 10 ^ { - 8 } \mathrm {~F} . Find C.


A) C=2.16×107FC = 2.16 \times 10 ^ { - 7 } F
B) C=8.92×108FC = 8.92 \times 10 ^ { - 8 } F
C) C=1.96×108FC = 1.96 \times 10 ^ { - 8 } F
D) C=7.6×109FC = 7.6 \times 10 ^ { - 9 } F
E) C=1.26×108FC = 1.26 \times 10 ^ { - 8 } F

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions