Solved

Use the Formula 1C=1C1+1C2+1C3\frac { 1 } { C } = \frac { 1 } { C _ { 1 } } + \frac { 1 } { C _ { 2 } } + \frac { 1 } { C _ { 3 } }

Question 210

Multiple Choice

Use the formula 1C=1C1+1C2+1C3\frac { 1 } { C } = \frac { 1 } { C _ { 1 } } + \frac { 1 } { C _ { 2 } } + \frac { 1 } { C _ { 3 } } . Given c=4.75×109Fc = 4.75 \times 10 ^ { - 9 } \quad F , C1=5.78×108FC _ { 1 } = 5.78 \times 10 ^ { - 8 } F and C3=7.19×109FC _ { 3 } = 7.19 \times 10 ^ { - 9 } \quad F . Find C2C _ { 2 } .


A) C2=3.15×109FC _ { 2 } = 3.15 \times 10 ^ { - 9 } \quad F
B) C2=1.85×108FC _ { 2 } = 1.85 \times 10 ^ { - 8 } \quad F
C) C2=5.15×109FC _ { 2 } = 5.15 \times 10 ^ { - 9 } \quad F
D) C2=2.95×108FC _ { 2 } = 2.95 \times 10 ^ { - 8 } \quad F
E) C2=1.39×108FC _ { 2 } = 1.39 \times 10 ^ { - 8 } \quad F

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions