Solved

If f(x)=2x5f ( x ) = \frac { 2 } { x - 5 }

Question 179

Multiple Choice

If f(x) =2x5f ( x ) = \frac { 2 } { x - 5 } find f(5) ,f(0) ,f(5) ,f(3) f ( - 5 ) , f ( 0 ) , f ( 5 ) , f ( - 3 ) .


A) f(5) =15,f(0) =25,f(5)  does not exist, f(3) =14f ( - 5 ) = - \frac { 1 } { 5 } , f ( 0 ) = - \frac { 2 } { 5 } , f ( 5 ) \text { does not exist, } f ( - 3 ) = - \frac { 1 } { 4 }
B) f(5)  does not exist, f(0) =25,f(5) =15,f(3) =14f ( - 5 ) \text { does not exist, } f ( 0 ) = - \frac { 2 } { 5 } , f ( 5 ) = \frac { 1 } { 5 } , f ( - 3 ) = - \frac { 1 } { 4 }
C) f(5) =15,f(0) =25,f(5)  does not exist, f(3) =14f ( - 5 ) = \frac { 1 } { 5 } , f ( 0 ) = - \frac { 2 } { 5 } , f ( 5 ) \text { does not exist, } f ( - 3 ) = - \frac { 1 } { 4 }
D) f(5) =15,f(0) =25,f(5) =15,f(3) =14f ( - 5 ) = - \frac { 1 } { 5 } , f ( 0 ) = - \frac { 2 } { 5 } , f ( 5 ) = \frac { 1 } { 5 } , f ( - 3 ) = \frac { 1 } { 4 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions