Solved

Express the Following as a Single Logarithm 3logbx+12logb(x2)7logb(3x+8)3 \log b x + \frac { 1 } { 2 } \log _ { b } ( x - 2 ) - 7 \log b ( 3 x + 8 )

Question 67

Multiple Choice

Express the following as a single logarithm. (Assume that all variables represent positive real numbers.) 3logbx+12logb(x2) 7logb(3x+8) 3 \log b x + \frac { 1 } { 2 } \log _ { b } ( x - 2 ) - 7 \log b ( 3 x + 8 )


A) logb(x3x2(3x+8) 7) \log b \left( \frac { x ^ { 3 } \sqrt { x - 2 } } { ( 3 x + 8 ) ^ { 7 } } \right)
B) logb((x2) 7x(3x+8) 3) \log b \left( \frac { ( x - 2 ) ^ { 7 } \sqrt { x } } { ( 3 x + 8 ) ^ { 3 } } \right)
C) logb(x7x2(3x+8) 3) \log b \left( \frac { x ^ { 7 } } { \sqrt { x - 2 } ( 3 x + 8 ) ^ { 3 } } \right)
D) logb(x73x+8(x2) 3) \log b \left( \frac { x ^ { 7 } } { \sqrt { 3 x + 8 } ( x - 2 ) ^ { 3 } } \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions