Solved

Solve the System by the Method of Substitution {x2+y=1x+y=15\left\{ \begin{array} { l } x ^ { 2 } + y = 1 \\x + y = - 15\end{array} \right.

Question 27

Multiple Choice

Solve the system by the method of substitution. {x2+y=1x+y=15\left\{ \begin{array} { l } x ^ { 2 } + y = 1 \\x + y = - 15\end{array} \right.


A) (1652,31652) ,(1+652,31+652) \left( \frac { 1 - \sqrt { 65 } } { 2 } , \frac { - 31 - \sqrt { 65 } } { 2 } \right) , \left( \frac { 1 + \sqrt { 65 } } { 2 } , \frac { - 31 + \sqrt { 65 } } { 2 } \right)
B) (1652,31+652) ,(1+652,31652) \left( \frac { 1 - \sqrt { 65 } } { 2 } , \frac { - 31 + \sqrt { 65 } } { 2 } \right) , \left( \frac { 1 + \sqrt { 65 } } { 2 } , \frac { - 31 - \sqrt { 65 } } { 2 } \right)
C) (1+592,29+652) ,(1+592,29652) \left( \frac { - 1 + \sqrt { 59 } } { 2 } , \frac { - 29 + \sqrt { 65 } } { 2 } \right) , \left( \frac { - 1 + \sqrt { 59 } } { 2 } , \frac { - 29 - \sqrt { 65 } } { 2 } \right)
D) (1592,29+652) ,(1592,29652) \left( \frac { 1 - \sqrt { 59 } } { 2 } , \frac { - 29 + \sqrt { 65 } } { 2 } \right) , \left( \frac { 1 - \sqrt { 59 } } { 2 } , \frac { - 29 - \sqrt { 65 } } { 2 } \right)
E) no solution exists

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions