Solved

Solve the Inequality x1x53\frac { x - 1 } { x - 5 } \leq 3

Question 28

Multiple Choice

Solve the inequality x1x53\frac { x - 1 } { x - 5 } \leq 3 and graph the solution on the real number line.


A) Solution: (5,) ( 5 , \infty )  Solve the inequality  \frac { x - 1 } { x - 5 } \leq 3  and graph the solution on the real number line. A) Solution:  ( 5 , \infty )     B) Solution:  ( 0 , \infty )     C) Solution:  ( - \infty , 0 )  \cup [ 7 , \infty )     D) Solution:  ( - \infty , 5 )  \cup [ 7 , \infty )     E) Solution:  ( - \infty , \infty )
B) Solution: (0,) ( 0 , \infty )  Solve the inequality  \frac { x - 1 } { x - 5 } \leq 3  and graph the solution on the real number line. A) Solution:  ( 5 , \infty )     B) Solution:  ( 0 , \infty )     C) Solution:  ( - \infty , 0 )  \cup [ 7 , \infty )     D) Solution:  ( - \infty , 5 )  \cup [ 7 , \infty )     E) Solution:  ( - \infty , \infty )
C) Solution: (,0) [7,) ( - \infty , 0 ) \cup [ 7 , \infty )  Solve the inequality  \frac { x - 1 } { x - 5 } \leq 3  and graph the solution on the real number line. A) Solution:  ( 5 , \infty )     B) Solution:  ( 0 , \infty )     C) Solution:  ( - \infty , 0 )  \cup [ 7 , \infty )     D) Solution:  ( - \infty , 5 )  \cup [ 7 , \infty )     E) Solution:  ( - \infty , \infty )
D) Solution: (,5) [7,) ( - \infty , 5 ) \cup [ 7 , \infty )  Solve the inequality  \frac { x - 1 } { x - 5 } \leq 3  and graph the solution on the real number line. A) Solution:  ( 5 , \infty )     B) Solution:  ( 0 , \infty )     C) Solution:  ( - \infty , 0 )  \cup [ 7 , \infty )     D) Solution:  ( - \infty , 5 )  \cup [ 7 , \infty )     E) Solution:  ( - \infty , \infty )
E) Solution: (,) ( - \infty , \infty )  Solve the inequality  \frac { x - 1 } { x - 5 } \leq 3  and graph the solution on the real number line. A) Solution:  ( 5 , \infty )     B) Solution:  ( 0 , \infty )     C) Solution:  ( - \infty , 0 )  \cup [ 7 , \infty )     D) Solution:  ( - \infty , 5 )  \cup [ 7 , \infty )     E) Solution:  ( - \infty , \infty )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions