Solved

Which Statement(s)verify That f(x)=9x1f ( x ) = 9 x - 1

Question 10

Multiple Choice

Which statement(s) verify that f(x) =9x1f ( x ) = 9 x - 1 and g(x) =19(x+1) g ( x ) = \frac { 1 } { 9 } ( x + 1 ) are inverse?


A) f(x) g(x) =(9x1) 19(x+1) =1f ( x ) \cdot g ( x ) = ( 9 x - 1 ) \frac { 1 } { 9 } ( x + 1 ) = - 1
B) f(g(x) ) =(9(19x) +1) 1=x,g(f(x) ) =19(9(x1) +1) =xf ( g ( x ) ) = \left( 9 \left( \frac { 1 } { 9 } x \right) + 1 \right) - 1 = x , g ( f ( x ) ) = \frac { 1 } { 9 } ( 9 ( x - 1 ) + 1 ) = x
C) f(g(x) ) =(9(19x) +1) 1=x;g(f(x) ) =19((9x1) +1) =xf ( g ( x ) ) = \left( 9 \left( \frac { 1 } { 9 } x \right) + 1 \right) - 1 = x ; g ( f ( x ) ) = \frac { 1 } { 9 } ( ( 9 x - 1 ) + 1 ) = x
D) f(g(x) ) =9(19(x+1) ) 1=x;g(f(x) ) =19((9x1) +1) =xf ( g ( x ) ) = 9 \left( \frac { 1 } { 9 } ( x + 1 ) \right) - 1 = x ; g ( f ( x ) ) = \frac { 1 } { 9 } ( ( 9 x - 1 ) + 1 ) = x
E) f(x) g(x) =9(x1) 9(x+1) =1\frac { f ( x ) } { g ( x ) } = \frac { 9 ( x - 1 ) } { 9 ( x + 1 ) } = - 1

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions