Multiple Choice
A machine learning (ML) specialist must develop a classification model for a financial services company. A domain expert provides the dataset, which is tabular with 10,000 rows and 1,020 features. During exploratory data analysis, the specialist finds no missing values and a small percentage of duplicate rows. There are correlation scores of > 0.9 for 200 feature pairs. The mean value of each feature is similar to its 50th percentile. Which feature engineering strategy should the ML specialist use with Amazon SageMaker?
A) Apply dimensionality reduction by using the principal component analysis (PCA) algorithm.
B) Drop the features with low correlation scores by using a Jupyter notebook.
C) Apply anomaly detection by using the Random Cut Forest (RCF) algorithm.
D) Concatenate the features with high correlation scores by using a Jupyter notebook.
Correct Answer:

Verified
Correct Answer:
Verified
Q1: A Machine Learning Specialist uploads a dataset
Q3: When submitting Amazon SageMaker training jobs using
Q4: An aircraft engine manufacturing company is measuring
Q5: A Machine Learning Specialist needs to be
Q6: A Machine Learning Specialist is designing a
Q7: A Machine Learning Specialist is building a
Q8: A Data Scientist is working on an
Q9: A company wants to predict the sale
Q10: A Machine Learning Specialist working for an
Q11: A Machine Learning Specialist is attempting to