Multiple Choice
Case Study 2:
def sierpinski(myTurtle, p1, p2, p3, depth) :
if depth > 0:
sierpinski(myTurtle, p1,
midPoint(p1, p2) , midPoint(p1, p3) , depth - 1)
sierpinski(myTurtle, p2,
midPoint(p2, p3) , midPoint(p2, p1) , depth - 1)
sierpinski(myTurtle, p3,
midPoint(p3, p1) , midPoint(p3, p2) , depth - 1) else:
drawTriangle(myTurtle, p1, p2, p3)
-Refer to the session in the accompanying Case Study 2. Which parameter to the sierpinski function is reduced during the recursive step?
A) p1
B) p2
C) p3
D) depth
Correct Answer:

Verified
Correct Answer:
Verified
Q19: A fractal tree requires only one recursive
Q20: Every recursive program must have a base
Q21: Case Study 3:<br>Axiom A<br>Rules A → B<br>B
Q22: Match each definition with its phrase.<br>-Fractal algorithm
Q23: A fractal is similar to itself at
Q25: Case Study 3:<br>Axiom A<br>Rules A → B<br>B
Q26: Case Study 1:<br>1. def drawSquare(aTurtle, side):<br>2. for
Q27: Case Study 3:<br>Axiom A<br>Rules A → B<br>B
Q28: Describe the purpose of the recursive step
Q29: Case Study 2:<br>def sierpinski(myTurtle, p1, p2, p3,