Solved

The Area of the Surface Generated by Revolving the Curve x(t)=t+2,y=t22+tx ( t ) = t + \sqrt { 2 } , \quad y = \frac { t ^ { 2 } } { 2 } + \sqrt { t }

Question 63

Multiple Choice

The area of the surface generated by revolving the curve x(t) =t+2,y=t22+tx ( t ) = t + \sqrt { 2 } , \quad y = \frac { t ^ { 2 } } { 2 } + \sqrt { t } with t[2,2]t \in [ - \sqrt { 2 } , \sqrt { 2 } ] about the y-axis is


A) 52π3\frac { 52 \pi } { 3 }
B) 26π3\frac { 26 \pi } { 3 }
C) 13π3\frac { 13 \pi } { 3 }
D) 11π5\frac { 11 \pi } { 5 }
E) 8π3\frac { 8 \pi } { 3 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions